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Simple attack:
a single input
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Di�erential Power Analysis [KJJ99]
Correlation Power Analysis [BCO04]
Mutual Information Analysis [Gie+08;
Bat+11]...

Non-pro�ling attacks
Pro�ling attacks
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Target
device

Clone
device

Machine Learning

Learn from data via statistic models
Task - Performance - Experience [TM97]

Supervised Learning

The supervised learning algorithms access to a
dataset of examples, each associated in general
to a target or label.
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Classi�cation

Machine Learning classi�ers in Side-Channel literature:
SVM ([Hos+11; HZ12]), RF ([LBM14; LBM15])

Classi�cation problem

Assign to a datum ~X a label Z among a set of possible labels Z = {s1, s2, s3},
or probabilities.

Advanced Attack as Multiple Classi�cation Problems
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Notations

Notations and generalities

I Side-channel traces: realizations of a random vector ~X ∈ RD

I D is the number of time samples (or features)
I Target: a sensitive variable Z = f (e, k) in Z = {s1, . . . , s|Z|}

Pro�ling attack scenario

I labelled traces Dtrain = (~xi , ei , ki )
N
i=1, acquired under known secrets

I attack traces Dattack = (~xi , ei )
Na
i=1 acquired under unknown secrets

16/04/2019, WRAC'H 2019| Eleonora Cagli| 8/42
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Pro�ling Attack

Pro�ling phase

I manage desynchronization problem [Dtrain −→ ρ : RD → RD ]

I mandatory dimensionality reduction [Dtrain −→ ε : RD → RC ]

I estimate

I p~X | Z=z

p~X pZ (generative model)

I Gaussian hypothesis (Template Attack) [CRR03]

I p
Z | ~X=~x

(discriminative model)

Attack phase

I Likelihood score for each key hypothesis k

dk = p~X | Z

(
(~xi )i=1,...,Na

, (f (ei , k))i=1,...,Na

)

I A-posteriori probability score for each key hypothesis k

dk = p | ~X

(
f (ei , k)i=1,...,Na

, (~xi )i=1,...,Na

)
,
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Pro�ling phase
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Mandatory Dimensionality Reduction

A vast domain

Features (Points of Interests -
PoI) selection

I SOD [CRR03]

I SOST [BDP10]

I SNR [MOP08]/ NICV
[Bha+14]

I t-test, F -test,... [GLRP06;
CK14]

Feature extraction

I Principal Component
Analysis (PCA) [Arc+06;
BHW12]

I Linear Discriminant Analysis
(LDA) [SA08; Bru+15]

I Projection Pursuits (PP)
[Dur+15]

Figure: SNR computed on synchronized traces.
16/04/2019, WRAC'H 2019| Eleonora Cagli| 10/42
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Manage desynchronization problem

Misaligning Countermeasures

I Random Delays, Clock Jittering, ...
I In theory: insu�cient to provide security, since information still leak

(somewhere)
I In practice: one of the main issues for evaluators

Figure: SNR computed on desynchronized traces.
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Manage desynchronization problem

Misaligning Countermeasures

I Random Delays, Clock Jittering, ...
I In theory: insu�cient to provide security, since information still leak

(somewhere)
I In practice: one of the main issues for evaluators

Realignment

Mandatory realignment preprocessing
I not a wide literature
I in practice: evaluation labs home-made realignment techniques
I signal deformations or pattern extraction based on prior unveri�ed

assumptions
I Risks:

I deformations → information degradation
I pattern extraction → information loss
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This talk

Pro�ling phase

I manage de-synchronization problem [Dtrain −→ ρ : RD → RD ]

I mandatory dimensionality reduction [Dtrain −→ ε : RD → RC ]

I estimate

I p
ε(ρ(~X )) | Z=z

, p
ε(ρ(~X ))

, pZ (generative model)

I Gaussian hypothesis (Template Attack)[CRR03]

I pZ | ε(ρ(~x) (discriminative model)

by means of a neural network p̂(~x ,W ) ≈ pZ | ~X=~x

This talk

Convolutional Neural Network: integrated approach (deal desynchronization +
extraction feature + approximate a discriminative model)
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DEEP LEARNING
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Multi-Layer Perceptron

In SCA litterature [MHM13; MZ13; MMT15; MDM16]

Multi-Layer Perceptron (MLP)

p̂(~x ,W ) = s ◦ λn ◦ σn−1 ◦ λn−1 ◦ · · · ◦ λ1(~x) = ~y ≈ pZ | ~X=~x

λi linear functions (linear combinations of time samples) depending on
some trainable weights W
σi non-linear functions
s normalizing softmax function

Universal approximation theorem

Figure: Linear layer in an MLP (Fully Connected Layer)
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Convolutional Neural Networks

Translation-Invariance

0% 20% 40% 60%

Classification

Horse Dog Cat

Classifier
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P(Z|X=x)
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Convolutional Layers

Figure: Linear layer in an MLP.
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Figure: Convolutional layer in a CNN.
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Pooling Layers
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Figure: Pooling layer in a CNN.
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A kind of CNN architecture
Temporal Features

S
id
e-
C
h
a
n
n
el

T
ra
ce

CONV+
ACT+
POOL

CONV+
ACT+
POOL

CONV+
ACT+
POOL

Abstract Features

FC +
Softmax

Scores

1
Architecture inspired by AlexNet [KSH12], VGG [SZ14], ResNet [He+16]
design rules:

I Reduce temporal features to only one

I Maintain time complexity of each layer (one-half pooling when number of
feature maps is doubled)

CHES 2017 - Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures -

Pro�ling Attacks Without Pre-processing. E. Cagli - C. Dumas - E. Prou�

I 4 Conv + Pool layers
I tanh activations
I batch normalisation [IS15]
I 1 fully connected layer + softmax 16/04/2019, WRAC'H 2019| Eleonora Cagli| 18/42
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Training and Validation (1)
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Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

Cost function - Cross-entropy

I batch of training data (~xi , zi )i∈I , outputs of the current model (~yi )i∈I

I labels zi = sj are one-hot encoded: ~zi = ~sj = (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0)

Loss function

L = − 1

|I |
∑
i∈I

|Z|∑
t=1

~zi [t] log ~yi [t] (1)

Maximum-a-posteriori or Cross-entropy

I ~yi ≈ Pr[Z | ~X = ~xi ]

I ~zi ≈ Pr[Z | Z = ~sj ]
I H(~zi , ~yi ) = H(~zi ) + DKL(~zi ||~yi ) = E~zi [− log ~yi ] = −

∑|Z|
t=1 ~zi [t] log ~yi [t]

16/04/2019, WRAC'H 2019| Eleonora Cagli| 20/42
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Training and Validation (2)
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Correct predictions
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Learn by heart (OVERFITTING)

Epoch
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Data Augmentation

Data Augmentation

Arti�cially generate new training data by deforming those previously acquired,
Applying transformations that preserve the label Z
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Side-Channel Data Augmentation

Countermeasure Emulation Idea

Emulate the e�ects of misaligning countermeasures to generate new traces

SHIFTING ADD-REMOVE
𝑇∗ − 𝑇

2

𝑇∗ − 𝑇

2

0

t

𝐷′

𝐷

Shifting Window

Time 
Samples

Figure: SHT

Original trace

Deforming trace via AR technique

Augmented trace

Figure: ARR
Parameter T : ] of possible positions
Parameter R: ] of added and removed points
Data Augmentation techniques are applied online during training phase.
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Training with Data Augmentation
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Experimental Results

I Random delays (software countermeasure)

I Arti�cial Jitter (simulated hardware countermeasure)

I Real Jitter (hardware countermeasure)

Keras 1.2.1 library with Tensor�ow backend [Cho+15] (open source, today
2.2.4)
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Random delays
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(a) One leaking operation

Setup

I Target Chip: Atmega328P
I Target Variable: Z = HW(Sbox(P ⊕ K))
I Acquisition: through ChipWhisperer[OC14] platform, ≈ 4, 000 time

samples
I Countermeasure: Random Delays - insertion of r nop operations,

r ∈ [0, 127] uniform random
I 1, 000 training traces
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Random delays
Data augmentation vs over�tting
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Table: N? = number of attack traces to have GE = 1.
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Random Delays - Two Leaking Operations
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Two leaking operations

First operation - Test acc: 76.8%, N? = 7
Second operation - Test acc: 82.5%, N? = 6
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Conclusions about CNN

I CNNs provide an integrated approach to construct a discriminative model from
misaligned data

I CNN models may have high capacity and require plenty of data to be trained
I Side-Channel-adapted Data Augmentation techniques
I E�ectiveness/e�ciency of the CNN+Data Augmentation approach

experimentally veri�ed
I Today Deep Learning attacks systematically performed in Side-Channel tests for

embedded cryptography evaluation

Among new problematics...

Deep Learning provides black-box models:

Estimator
F( . ; θ)

P(Z|X=x)

0% 20% 40% 60% 80% 100%
Z=0 Z=1

x

Lack of posterior knowledge: how did the model learn?
Lack of trust: where did the model get the information?
No hints to correct vulnerability
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Gradient Visualization

L.Masure et al., Gradient Visualization for General Characterization in Pro�ling
Attacks, COSADE 2019 (Darmstadt, 5th April 2019)

I proposes a characterization technique based on a trained CNN

I able to detect Points of Interest (PoIs) as long as the model has learned
something

I already proposed in Image Recognition [SVZ13; Spr+14]

I starts to be used in SCA [Tim19; HGG19]
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An ideal case

Ideal case: we know F ∗ = Pr[Z |X] (i.e. F ∗ : RD → P(Z) ⊂ [0, 1]|Z|)

An example
An explanation

I Assume the informative leakage is
very localized (few PoIs)
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Ideal case: we know F ∗ = Pr[Z |X] (i.e. F ∗ : RD → P(Z) ⊂ [0, 1]|Z|)

An example

  

An explanation

I Assume the informative leakage is
very localized (few PoIs)

I Consider a new trace and its label
~x , z
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Application on experimental data

Description

ASCAD dataset [Pro+18]: https://github.com/ANSSI-FR/ASCAD
50, 000 traces, each of 700 points
Source codes of secure implementations of AES128 for public 8-bit
architectures (https://github.com/ANSSI-FR/secAES-ATmega8515)
Corresponds to the �rst AES round
Three cases studied:
1. No countermeasure: synchronized traces, no masking
2. Arti�cial random shift
3. Synchronized traces, boolean masking (unknown masks)

Trained model

CNN with a VGG-like architecture
Grid search of hyperparameters
Best model: minimal trace number when the guessing entropy reaches 2
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First experiment: no countermeasure

Average number of traces to recover the secret key: 3
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Figure: SNR
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Figure: Gradient Visualization
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Second experiment: with desynchronization

Average number of traces to recover the secret key: 3.6
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Figure: No PoI emphasized
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Third experiment: with masking

Average number of traces to recover the secret key: ≈ 100
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Be careful not to over�t !
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Conclusions on Gradient Visualization

I Reinforces trust into Deep Learning tools: in absence of over�tting
information comes from well-identi�able regions of interest

I May be used to guide early-stopping and prevent over�tting

I Provides characterization of leakages, allows developpers to correct the
vulnerability
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Conclusions
I Curse of dimensionality a�ects the potential optimality of pro�ling attacks

I Machine Learning : pro�ling attacks ≈ classi�cation task

I Generative model approach: Template Attacks

I Discriminative model approach:

I Neural Networks, big data scalability

I CNN to integrate resynchronization in a unique model construction process

Today and in the future

I Going towards a community "ML for Embedded Security Analysis"
(A whole session at WRAC'H today!)
(since ASCAD publication ∼ 15 published papers in which ASCAD is used
as benchmark)

I Beyond Classi�cation
I Collision attacks ≈ veri�cation task (siamese network)
I Does "accuracy" matter? Need for specifying a proper

"Advanced-attack-oriented machine learning task" (SCA-speci�c loss
functions and metrics)
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Thank You!

I Eleonora Cagli, Cécile Dumas, Emmanuel Prou�: Convolutional Neural
Networks with Data Augmentation against Jitter-Based Countermeasures -
Pro�ling Attacks without Pre-Processing -. IACR Cryptology ePrint
Archive 2017: 740 (2017) - CHES 2017:45-68

I Emmanuel Prou�, Remi Strullu, Ryad Benadjila, Eleonora Cagli, Cécile
Dumas: Study of Deep Learning Techniques for Side-Channel Analysis and
Introduction to ASCAD Database. IACR Cryptology ePrint Archive 2018:
53 (2018) https://github.com/ANSSI-FR/ASCAD

I Loïc Masure, Cécile Dumas, Emmanuel Prou�: Gradient Visualization for
General Characterization in Pro�ling Attacks (COSADE 2019)

16/04/2019, WRAC'H 2019| Eleonora Cagli| 42/42

https://github.com/ANSSI-FR/ASCAD


Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References I

[Arc+06] C. Archambeau et al. �Template Attacks in Principal Subspaces�.
English. In: Cryptographic Hardware and Embedded Systems -
CHES 2006. Ed. by Louis Goubin and Mitsuru Matsui. Vol. 4249.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2006, pp. 1�14. ISBN: 978-3-540-46559-1. DOI:
10.1007/11894063_1. URL:
http://dx.doi.org/10.1007/11894063_1.

[BDP10] Martin Bär, Hermann Drexler, and Jürgen Pulkus. �Improved
template attacks�. In: COSADE2010 (2010).

[BHW12] Lejla Batina, Jip Hogenboom, and Jasper G.J. van Woudenberg.
�Getting More from PCA: First Results of Using Principal
Component Analysis for Extensive Power Analysis�. English. In:
Topics in Cryptology CT-RSA 2012. Ed. by Orr Dunkelman.
Vol. 7178. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pp. 383�397. ISBN: 978-3-642-27953-9. DOI:
10.1007/978-3-642-27954-6_24. URL:
http://dx.doi.org/10.1007/978-3-642-27954-6_24.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 43/42

https://doi.org/10.1007/11894063_1
http://dx.doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-642-27954-6_24
http://dx.doi.org/10.1007/978-3-642-27954-6_24


Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References II

[Bat+11] Lejla Batina et al. �Mutual information analysis: a comprehensive
study�. In: Journal of Cryptology 24.2 (2011), pp. 269�291.

[Bha+14] Shivam Bhasin et al. �Side-channel leakage and trace compression
using normalized inter-class variance�. In: Proceedings of the Third
Workshop on Hardware and Architectural Support for Security and
Privacy. ACM. 2014, p. 7.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. �Correlation
power analysis with a leakage model�. In: International Workshop
on Cryptographic Hardware and Embedded Systems. Springer.
2004, pp. 16�29.

[Bru+15] Nicolas Bruneau et al. �Less is more�. In: International Workshop
on Cryptographic Hardware and Embedded Systems. Springer.
2015, pp. 22�41.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 44/42



Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References III

[CRR03] Suresh Chari, JosyulaR. Rao, and Pankaj Rohatgi. �Template
Attacks�. English. In: Cryptographic Hardware and Embedded
Systems - CHES 2002. Ed. by Burton S. Kaliski, Cetin K. Koc, and
Christof Paar. Vol. 2523. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2003, pp. 13�28. ISBN:
978-3-540-00409-7. DOI: 10.1007/3-540-36400-5_3. URL:
http://dx.doi.org/10.1007/3-540-36400-5_3.

[Cho+15] François Chollet et al. Keras.
https://github.com/fchollet/keras. 2015.

[CK14] Omar Choudary and Markus G Kuhn. �E�cient template attacks�.
In: Smart Card Research and Advanced Applications. Springer,
2014, pp. 253�270.

[Dur+15] François Durvaux et al. �E�cient selection of time samples for
higher-order DPA with projection pursuits�. In: Constructive
Side-Channel Analysis and Secure Design. Springer, 2015,
pp. 34�50.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 45/42

https://doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/3-540-36400-5_3
https://github.com/fchollet/keras


Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References IV

[GLRP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar.
�Templates vs. stochastic methods�. In: International Workshop on
Cryptographic Hardware and Embedded Systems. Springer. 2006,
pp. 15�29.

[Gie+08] Benedikt Gierlichs et al. �Mutual information analysis�. In:
International Workshop on Cryptographic Hardware and Embedded
Systems. Springer. 2008, pp. 426�442.

[He+16] Kaiming He et al. �Deep residual learning for image recognition�.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770�778.

[HGG19] Benjamin Hettwer, Stefan Gehrer, and Tim Gneysu. Deep Neural
Network Attribution Methods for Leakage Analysis and Symmetric
Key Recovery. 143. 2019. URL:
https://eprint.iacr.org/2019/143 (visited on 02/21/2019).

16/04/2019, WRAC'H 2019| Eleonora Cagli| 46/42

https://eprint.iacr.org/2019/143


Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References V

[HZ12] Annelie Heuser and Michael Zohner. �Intelligent Machine
Homicide�. English. In: Constructive Side-Channel Analysis and
Secure Design. Ed. by Werner Schindler and SorinA. Huss.
Vol. 7275. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pp. 249�264. ISBN: 978-3-642-29911-7. DOI:
10.1007/978-3-642-29912-4_18. URL:
http://dx.doi.org/10.1007/978-3-642-29912-4_18.

[Hos+11] Gabriel Hospodar et al. �Machine learning in side-channel analysis:
a �rst study�. English. In: Journal of Cryptographic Engineering 1.4
(2011), pp. 293�302. ISSN: 2190-8508. DOI:
10.1007/s13389-011-0023-x. URL:
http://dx.doi.org/10.1007/s13389-011-0023-x.

[IS15] Sergey Io�e and Christian Szegedy. �Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift�. In: CoRR abs/1502.03167 (2015). URL:
http://arxiv.org/abs/1502.03167.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 47/42

https://doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/978-3-642-29912-4_18
https://doi.org/10.1007/s13389-011-0023-x
http://dx.doi.org/10.1007/s13389-011-0023-x
http://arxiv.org/abs/1502.03167


Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References VI

[KJJ99] Paul Kocher, Joshua Ja�e, and Benjamin Jun. �Di�erential power
analysis�. In: Annual International Cryptology Conference. Springer.
1999, pp. 388�397.

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. �ImageNet
Classi�cation with Deep Convolutional Neural Networks�. In:
Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States. 2012, pp. 1106�1114.

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. �A
machine learning approach against a masked AES�. In: Journal of
Cryptographic Engineering 5.2 (2015), pp. 123�139.

[LBM14] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. �Power
analysis attack: an approach based on machine learning�. In:
International Journal of Applied Cryptography 3.2 (2014),
pp. 97�115.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 48/42



Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References VII

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
analysis attacks: Revealing the secrets of smart cards. Vol. 31.
Springer Science & Business Media, 2008.

[MDM16] Zdenek Martinasek, Petr Dzurenda, and Lukas Malina. �Pro�ling
power analysis attack based on MLP in DPA contest V4. 2�. In:
Telecommunications and Signal Processing (TSP), 2016 39th
International Conference on. IEEE. 2016, pp. 223�226.

[MHM13] Zdenek Martinasek, Jan Hajny, and Lukas Malina. �Optimization
of power analysis using neural network�. In: International
Conference on Smart Card Research and Advanced Applications.
Springer. 2013, pp. 94�107.

[MMT15] Zdenek Martinasek, Lukas Malina, and Krisztina Trasy. �Pro�ling
power analysis attack based on multi-layer perceptron network�. In:
Computational Problems in Science and Engineering. Springer,
2015, pp. 317�339.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 49/42



Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References VIII

[MZ13] Zdenek Martinasek and Vaclav Zeman. �Innovative method of the
power analysis�. In: Radioengineering 22.2 (2013), pp. 586�594.

[OC14] Colin O'Flynn and Zhizhang David Chen. �ChipWhisperer: An
open-source platform for hardware embedded security research�. In:
Constructive Side-Channel Analysis and Secure Design. Springer,
2014, pp. 243�260.

[Pro+18] Emmanuel Prou� et al. Study of Deep Learning Techniques for
Side-Channel Analysis and Introduction to ASCAD Database.
Cryptology ePrint Archive, Report 2018/053.
https://eprint.iacr.org/2018/053. 2018.

[SVZ13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. �Deep
Inside Convolutional Networks: Visualising Image Classi�cation
Models and Saliency Maps�. In: arXiv:1312.6034 [cs] (Dec. 20,
2013). arXiv: 1312.6034. URL:
http://arxiv.org/abs/1312.6034 (visited on 09/07/2018).

16/04/2019, WRAC'H 2019| Eleonora Cagli| 50/42

https://eprint.iacr.org/2018/053
https://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034


Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References IX

[SZ14] Karen Simonyan and Andrew Zisserman. �Very deep convolutional
networks for large-scale image recognition�. In: arXiv preprint
arXiv:1409.1556 (2014).

[Spr+14] Jost Tobias Springenberg et al. �Striving for Simplicity: The All
Convolutional Net�. In: arXiv:1412.6806 [cs] (Dec. 21, 2014).
arXiv: 1412.6806. URL: http://arxiv.org/abs/1412.6806
(visited on 09/07/2018).

[SA08] François-Xavier Standaert and Cedric Archambeau. �Using
Subspace-Based Template Attacks to Compare and Combine
Power and Electromagnetic Information Leakages�. English. In:
Cryptographic Hardware and Embedded Systems CHES 2008.
Ed. by Elisabeth Oswald and Pankaj Rohatgi. Vol. 5154. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pp. 411�425. ISBN: 978-3-540-85052-6. DOI:
10.1007/978-3-540-85053-3_26. URL:
http://dx.doi.org/10.1007/978-3-540-85053-3_26.

[TM97] Mitchell T. M. Machine Learning. McGraw-Hill, New York, 1997.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 51/42

https://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
https://doi.org/10.1007/978-3-540-85053-3_26
http://dx.doi.org/10.1007/978-3-540-85053-3_26


Classifying Side-Channel Desynchronized Signals with
Convolutional Neural Networks

References X

[Tim19] Benjamin Timon. �Non-Pro�led Deep Learning-based Side-Channel
attacks with Sensitivity Analysis�. In: IACR Transactions on
Cryptographic Hardware and Embedded Systems (Feb. 28, 2019),
pp. 107�131. ISSN: 2569-2925. DOI:
10.13154/tches.v2019.i2.107-131. URL: https:
//tches.iacr.org/index.php/TCHES/article/view/7387

(visited on 03/25/2019).

16/04/2019, WRAC'H 2019| Eleonora Cagli| 52/42

https://doi.org/10.13154/tches.v2019.i2.107-131
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://tches.iacr.org/index.php/TCHES/article/view/7387

	Context and State of the Art
	Deep Learning against Misalignment
	Neural Network Classifiers
	Data Augmentation
	Experimental Results

	Gradient Visualization
	Conclusions
	References

