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Machine Learning

Learn from data via statistic models
Task - Performance - Experience [TM97]

Supervised Learning

The supervised learning algorithms access to a
dataset of examples, each associated in general
to a target or label.
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Classification

Machine Learning classifiers in Side-Channel literature:
SVM ([Hos+11; HZ12]), RF ([LBM14; LBM15])

Classification problem

Assign to a datum X a label Z among a set of possible labels Z = {s1, 52, s3},

or probabilities.
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Notations

Notations and generalities

> Side-channel traces: realizations of a random vector X € R
» D is the number of time samples (or features)
» Target: a sensitive variable Z = f(e,k) in Z = {s1,...,5z}

v

Profiling attack scenario

> labelled traces Dyain = (X, &, ki).1, acquired under known secrets
- N, .
> attack traces Datrack = (Xi, €1);2; acquired under unknown secrets

\
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Profiling Attack X € RP
. Curse of dimensionality!
Profiling phase

> manage desynchronization problem [Dyain — p: R® — RP]
» mandatory dimensionality reduction [Dirain — €: R? — R]
> estimate
> Pe(p(R)) | Z=2 Pe(p(%y) PZ (generative model)
» Gaussian hypothesis (Template Attack) [CRR03]

> p, | p(e(R))=e(p(%) (discriminative model)

Attack phase

» Likelihood score for each key hypothesis k
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Mandatory Dimensionality Reduction

Features (Points of Interests -
Pol) selection

Feature extraction
» Principal Component

> SOD [CRRO3] Analysis (PCA) [Arc+06;

»> SOST [BDP10] BHW12]

> SNR [MOP08]/ NICV » Linear Discriminant Analysis
[Bha+14] (LDA) [SA08; Bru+15]

> t-test, F-test,... [GLRPO6; > Projection Pursuits (PP)
CK14] [Dur+15]

A

|-

Figure: SNR computed on synchronized traces.
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Manage desynchronization problem

Misaligning Countermeasures

» Random Delays, Clock Jittering, ...
» In theory: insufficient to provide security, since information still leak

(somewhere)
sl
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Figure: SNR computed on desynchronized traces.
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Manage desynchronization problem

Misaligning Countermeasures

» Random Delays, Clock Jittering, ...

» In theory: insufficient to provide security, since information still leak
(somewhere)

» In practice: one of the main issues for evaluators

v

Realignment

Mandatory realignment preprocessing
» not a wide literature
» in practice: evaluation labs home-made realignment techniques
» signal deformations or pattern extraction based on prior unverified
assumptions
» Risks:
> deformations — information degradation
> pattern extraction — information loss
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This talk

Profiling phase
> manage de-synchronization problem [Dirin —> p: R — RP]
> mandatory dimensionality reduction [Derain — €: R? — R€]
> estimate
> Pe(p(R)) | Z=2" Pe(p(R))* PZ (generative model)
» Gaussian hypothesis (Template Attack)[CRR03]

» Pz | oz (discriminative model)

Convolutional Neural Network: integrated approach (deal desynchronization +
extraction feature + approximate a discriminative model)
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This talk

Profiling phase
» manage de-synchBEERIBEARMING [Di.in — p: RP — RP]
» mandatory dimensionality reduction [Dirain — €: RP — R€]
» estimate
> Pe(p(R)) | Z=2" Pe(p(%)) PZ (generative model)
P Gaussian hypothesis (Template Attack)[CRRO03]

> p; | x (discriminative model)
by means of a neural network p(x, W) ~ p, | 3

Convolutional Neural Network: integrated approach (deal desynchronization +
extraction feature + approximate a discriminative model)
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Convolutional Layers

Input Output
0
InpMNJrace Output 1
2 2|4 6f2[6|1]o2|cA| [=] - _
3] [Ngl1fof1]of7]o[f0]0 [« ] 31711
1 s aNg1/1]0]1 1/0fa ] . = 1 -
HEB 1(0/1 W5 |af7|6|5/a]0 ]% || P 2|2
gl 7/0/5/|4 L 7/0f-1]1]0 n'é, o \0 ’//
) [als g oNe 1 [o]s] [=]2 Y 0 412
8| |2]g DEEE 5/4/6 L= | =} 2
1 of1]s]1]of7]0|Ng]o B ,3
9L/ 1|12 6[1]of1]s]1]0) [«] 3
Matrix of weights [=]
P prameer N 1 3 conv. filters
0 of size 2 x 1
Figure: Linear layer in an MLP. Depth =1 Depth= 3

Figure: Convolutional layer in a CNN.
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Pooling Layers

Before Pooling

8 | 1.
1511 N
Input Output ~ o
. L] 10(25 “~ . _ After Pooling
3z 1o 1/[o]o]o “T22[8 6 9| 1B - 15(25
‘27?‘ 0/ 1)1 011--/‘ T
oafel ] 7 9
| i 0
| 4 comv. fltrs =
] of size 2 x 3 D(‘pth: /1
Depth =3 Depth= 4
Figure: Convolutional layer in a CNN.
Depth= 4

Figure: Pooling layer in a CNN.
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A kind of CNN architecture

Temporal Features

H Abstract Features Scores
FC

CONV oftmax
POOI

c

Side-Channel Trace

ONV
ACT
>0

Architecture inspired by AlexNet [KSH12]|, VGG [SZ14], ResNet [He+16]
design rules:

» Reduce temporal features to only one

» Maintain time complexity of each layer (one-half pooling when number of
feature maps is doubled)

CHES 2017 - Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures -

Profiling Attacks Without Pre-processing. E. Cagli - C. Dumas - E. Prouff

» 4 Conv + Pool layers

» tanh activations

> batch normalisation [IS15]

> 1 fu”y connected Iayer + SOftmaX 16/04/2019, WRAC'H 2019| Eleonora Cagli| 18/42
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Training and Validation (1)

Architecture
Hyper-parameters

TR Validation
Traces
Profiling ﬁ
Traces Training .
Traces _— Cost function
Gradient Descent
TRAINING

Parameters update
Training Learning Rate
Hyper-parameters
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Cost function - Cross-entropy

» batch of training data (X, z)ic/, outputs of the current model (¥j)ic/

» labels zj = s; are one-hot encoded: zi = §; = (0,...,0, 1 ,0,...,0)
~~
j
1 |Z]
L= —mZZz[t] log yi[t] (1)
iel t=1

v
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Overfitting

Correct predictions

Total predictions

Evaluate and compare training and validation accuracy

Learn by heart (OVERFITTING)
Accuracy
Training
Validation
Epoch
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Convolutional Neural Networks

Overfitting

Correct predictions

Total predictions

Evaluate and compare training and validation accuracy

Understand significant features Learn by heart (OVERFITTING)
Accuracy Accuracy
Training Training
Validation
Validation
Epoch Epoch
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Convolutional Neural Networks

Data Augmentation

Data Augmentation

Artificially generate new training data by deforming those previously acquired,
Applying transformations that preserve the label Z

L 5 f \
i ®

.

r}i]) -
[ Z = Dog [ Z = Dog

Original Datum Augmented Data
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Side-Channel Data Augmentation

Countermeasure Emulation Idea

Emulate the effects of misaligning countermeasures to generate new traces

SHIFTING ADD-REMOVE

T r-r \/\/\/\/\/
2 D'

Original trace
Deforming trace via AR technique

Time ‘\-/\/\j\/\/ ‘

— Samples

D

Shifting Window
=)

i

Augmented trace

o

Figure: SHy Figure: ARr
Parameter T: # of possible positions
Parameter R: # of added and removed points
Data Augmentation techniques are applied online during training phase.
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Experimental Results

» Random delays (software countermeasure)
> Artificial Jitter (simulated hardware countermeasure)

» Real Jitter (hardware countermeasure)

Keras 1.2.1 library with Tensorflow backend [Cho+15] (open source, today
2.2.4)
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(a) One leaking operation

Target Chip: Atmega328P
Target Variable: Z = HW(Sbox(P & K))

Acquisition: through ChipWhisperer[OC14] platform, ~ 4,000 time

samples

Countermeasure: Random Delays - insertion of r nop operations,

r € [0,127] uniform random
1,000 training traces

4000
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Random delays
Data augmentation vs overfitting

Training

1. 1
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Convolutional Neural Networks

Random delays

Data augmentation vs overfitting

1. 1.
0.9 0.9
0.8 0.8
0.7, — 0.7, —
0.6 — training accuracy 0.6 — training accuracy 1
0.5 — validation accuracy 0.5 — validation accuracy X m H\l
0.4] — training accuracy
g-i ' — validation accuracy
20 40 60 80 100 120 20 40 60 80 100 120 140 0 50 100 150 200 250 300
Epoch Epoch Epoch
SHo SHio0 SHsoo
Attack
¥ Y ¥
SHo SHi1oo SHsoo

Accuracy | N* [ 27.0% | >1,000 [ 31.8% | 101 [ 78% [ 7

Table: N* = number of attack traces to have GE = 1.
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Random Delays - Two Leaking Operations
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Time samples

Two leaking operations

First operation - Test acc: 76.8%, N* =7
Second operation - Test acc: 82.5%, N* =6
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Conclusions about CNN

»> CNNs provide an integrated approach to construct a discriminative model from
misaligned data
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Deep Learning provides black-box models:

Lack of posterior knowledge: how did the model learn?
Lack of trust: where did the model get the information?

piz] x:x)—

NV

0% 20% 40% 60% 80% 100%
mZ=0 mZz=1

X

v

16/04/2019, WRAC'H 2019| Eleonora Cagli| 30/42




Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

Conclusions about CNN

>
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CNNs provide an integrated approach to construct a discriminative model from
misaligned data

CNN models may have high capacity and require plenty of data to be trained
Side-Channel-adapted Data Augmentation techniques

Effectiveness/efficiency of the CNN+Data Augmentation approach
experimentally verified

Today Deep Learning attacks systematically performed in Side-Channel tests for
embedded cryptography evaluation

Among new problem

Deep Learning provides black-box models:

Lack of posterior knowledge: how did the model learn?
Lack of trust: where did the model get the information?
No hints to correct vulnerability
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Gradient Visualization

L.Masure et al., Gradient Visualization for General Characterization in Profiling
Attacks, COSADE 2019 (Darmstadt, 5th April 2019) J

» proposes a characterization technique based on a trained CNN
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Convolutional Neural Networks

Gradient Visualization

L.Masure et al., Gradient Visualization for General Characterization in Profiling
Attacks, COSADE 2019 (Darmstadt, 5th April 2019) J

» proposes a characterization technique based on a trained CNN

> able to detect Points of Interest (Pols) as long as the model has learned
something

» already proposed in Image Recognition [SVZ13; Spr+14]
> starts to be used in SCA [Tim19; HGG19]
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An ideal case

Ideal case: we know F* = Pr[Z|X] (i.e. F*:RP — P(Z) c [0,1]'®])

An explanation

An example . . .
> Assume the informative leakage is

very localized (few Pols)
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Convolutional Neural Networks

Application on experimental data

Description

ASCAD dataset [Pro+18]: https://github.com/ANSSI-FR/ASCAD
50,000 traces, each of 700 points
Source codes of secure implementations of AES128 for public 8-bit
architectures (https://github.com/ANSSI-FR/secAES-ATmega8515)
Corresponds to the first AES round
Three cases studied:

1. No countermeasure: synchronized traces, no masking

2. Artificial random shift

3. Synchronized traces, boolean masking (unknown masks)

Trained model

CNN with a VGG-like architecture
Grid search of hyperparameters
Best model: minimal trace number when the guessing entropy reaches 2

| \
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Lleti

First experiment: no countermeasure

Average number of traces to recover the secret key: 3

SNR for Z = SBox(p[3] & k[3]) @® 7ou
Synchronized traces
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Figure: SNR
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Figure: Gradient Visualization
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Second experiment: with desynchronization

Average number of traces to recover the secret key: 3.6

Loss function gradient (average)
No masking, random shift (100)

SNR on ASCAD with random shift (100) 0.006 =

0.00625
0.005 -

0.00600

0.004 -
0.00575

£ 0.00550 0.003 -

Gradient

0.00525
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0.00500
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Figure: No Pol emphasized @
Figure: Band of peaks Q
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Second experiment: with desynchronization

Average number of traces to recover the secret key: 3.6
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No masking, random shift (100)

10 -

0.8 -

Gradient

0.6 -

0.4 -

0.2 -

0.0 -

o w00 200 %00 400 800 60 700
Time (samples)

Figure: Characterization for each trace Q
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Third experiment: with masking

Average number of traces to recover the secret key: ~ 100

Signal-to-Noise Ratios
ASCAD database
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Be careful not to overfit !

Loss function gradient (average) Loss function gradient (average)
With masking, no shift With masking, no shift
ooooi-
£ o000 - £ oow0-
5 S oo -
0 a0 20 a0 4o 0 oo 7o 0 w0 20 a0 a0 0 e 0
Time (samples) Time (samples)
Figure: GV without overfitting © Figure: GV with overfitting @
Accuracy
Training
Validation
Epoch

Figure: Solution: early-stopping

16/04/2019, WRAC'H 2019| Eleonora Cagli| 38/42




Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

Conclusions on Gradient Visualization

» Reinforces trust into Deep Learning tools: in absence of overfitting
information comes from well-identifiable regions of interest

» May be used to guide early-stopping and prevent overfitting

» Provides characterization of leakages, allows developpers to correct the
vulnerability
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Conclusions
» Curse of dimensionality affects the potential optimality of profiling attacks
» Machine Learning : profiling attacks ~ classification task
» Generative model approach: Template Attacks
» Discriminative model approach:
» Neural Networks, big data scalability

» CNN to integrate resynchronization in a unique model construction process
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Convolutional Neural Networks

Conclusions
» Curse of dimensionality affects the potential optimality of profiling attacks
» Machine Learning : profiling attacks ~ classification task
» Generative model approach: Template Attacks
» Discriminative model approach:
» Neural Networks, big data scalability

» CNN to integrate resynchronization in a unique model construction process

Today and in the future

» Going towards a community "ML for Embedded Security Analysis"

v

16/04/2019, WRAC'H 2019| Eleonora Cagli| 41/42



Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

Conclusions
» Curse of dimensionality affects the potential optimality of profiling attacks
» Machine Learning : profiling attacks ~ classification task
» Generative model approach: Template Attacks
» Discriminative model approach:
» Neural Networks, big data scalability

» CNN to integrate resynchronization in a unique model construction process

Today and in the future

» Going towards a community "ML for Embedded Security Analysis"
(A whole session at WRAC'H today!)

v

16/04/2019, WRAC'H 2019| Eleonora Cagli| 41/42



Classifying Side-Channel Desynchronized Signals with

Convolutional Neural Networks

Conclusions
» Curse of dimensionality affects the potential optimality of profiling attacks
» Machine Learning : profiling attacks ~ classification task
» Generative model approach: Template Attacks
» Discriminative model approach:
» Neural Networks, big data scalability

» CNN to integrate resynchronization in a unique model construction process

Today and in the future

» Going towards a community "ML for Embedded Security Analysis"
(A whole session at WRAC'H today!)
(since ASCAD publication ~ 15 published papers in which ASCAD is used
as benchmark)

v

16/04/2019, WRAC'H 2019| Eleonora Cagli| 41/42
o -9,



Classifying Side-Channel Desynchronized Signals with

Convolutional Neural Networks

Conclusions
» Curse of dimensionality affects the potential optimality of profiling attacks
» Machine Learning : profiling attacks ~ classification task
» Generative model approach: Template Attacks
» Discriminative model approach:
» Neural Networks, big data scalability

» CNN to integrate resynchronization in a unique model construction process

Today and in the future

» Going towards a community "ML for Embedded Security Analysis"
(A whole session at WRAC'H today!)
(since ASCAD publication ~ 15 published papers in which ASCAD is used

as benchmark)
» Beyond Classification

v

16/04/2019, WRAC'H 2019| Eleonora Cagli| 41/42



Classifying Side-Channel Desynchronized Signals with

Convolutional Neural Networks

Conclusions
» Curse of dimensionality affects the potential optimality of profiling attacks

» Machine Learning : profiling attacks ~ classification task

» Generative model approach: Template Attacks
» Discriminative model approach:
» Neural Networks, big data scalability

» CNN to integrate resynchronization in a unique model construction process

Today and in the future

» Going towards a community "ML for Embedded Security Analysis"
(A whole session at WRAC'H today!)
(since ASCAD publication ~ 15 published papers in which ASCAD is used
as benchmark)
» Beyond Classification
> Collision attacks ~ verification task (siamese network)

v

16/04/2019, WRAC'H 2019| Eleonora Cagli| 41/42



Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

Conclusions
» Curse of dimensionality affects the potential optimality of profiling attacks

» Machine Learning : profiling attacks ~ classification task

» Generative model approach: Template Attacks
» Discriminative model approach:
> Neural Networks, big data scalability

> CNN to integrate resynchronization in a unique model construction process

Today and in the future

» Going towards a community "ML for Embedded Security Analysis"
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as benchmark)
» Beyond Classification
> Collision attacks = verification task (siamese network)
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» Eleonora Cagli, Cécile Dumas, Emmanuel Prouff: Convolutional Neural
Networks with Data Augmentation against Jitter-Based Countermeasures -
Profiling Attacks without Pre-Processing -. IACR Cryptology ePrint
Archive 2017: 740 (2017) - CHES 2017:45-68

» Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, Cécile
Dumas: Study of Deep Learning Techniques for Side-Channel Analysis and
Introduction to ASCAD Database. IACR Cryptology ePrint Archive 2018:
53 (2018) https://github.com/ANSSI-FR/ASCAD

» Loic Masure, Cécile Dumas, Emmanuel Prouff: Gradient Visualization for
General Characterization in Profiling Attacks (COSADE 2019)

16/04/2019, WRAC'H 2019| Eleonora Cagli| 42/42


https://github.com/ANSSI-FR/ASCAD

Classifying Side-Channel Desynchronized Signals w

Convolutional Neural Networks

References |

[Arc+06]

[BDP10]

[BHW12]

C. Archambeau et al. “Template Attacks in Principal Subspaces”.
English. In: Cryptographic Hardware and Embedded Systems -
CHES 2006. Ed. by Louis Goubin and Mitsuru Matsui. Vol. 4249.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2006, pp. 1-14. ISBN: 978-3-540-46559-1. DOI:
10.1007/11894063_1. URL:
http://dx.doi.org/10.1007/11894063_1.

Martin Bar, Hermann Drexler, and Jiirgen Pulkus. “Improved
template attacks”. In: COSADE2010 (2010).

Lejla Batina, Jip Hogenboom, and Jasper G.J. van Woudenberg.
“Getting More from PCA: First Results of Using Principal
Component Analysis for Extensive Power Analysis”. English. In:
Topics in Cryptology CT-RSA 2012. Ed. by Orr Dunkelman.
Vol. 7178. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pp. 383-397. ISBN: 978-3-642-27953-9. DOI:
10.1007/978-3-642-27954-6_24. URL:
http://dx.doi.org/10.1007/978-3-642-27954-6_24.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 43/42


https://doi.org/10.1007/11894063_1
http://dx.doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-642-27954-6_24
http://dx.doi.org/10.1007/978-3-642-27954-6_24

Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

References Il

[Bat+11]

[Bha+14]

[BCOO4]

[Bru+15]

Lejla Batina et al. “Mutual information analysis: a comprehensive
study”. In: Journal of Cryptology 24.2 (2011), pp. 269-291.

Shivam Bhasin et al. “Side-channel leakage and trace compression
using normalized inter-class variance”. In: Proceedings of the Third
Workshop on Hardware and Architectural Support for Security and
Privacy. ACM. 2014, p. 7.

Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation
power analysis with a leakage model”. In: International Workshop
on Cryptographic Hardware and Embedded Systems. Springer.
2004, pp. 16-29.

Nicolas Bruneau et al. “Less is more”. In: International Workshop
on Cryptographic Hardware and Embedded Systems. Springer.
2015, pp. 22-41.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 44/42



Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

References Il

[CRRO3]

[Cho+15]

[CK14]

[Dur+15]

Suresh Chari, JosyulaR. Rao, and Pankaj Rohatgi. “Template
Attacks”. English. In: Cryptographic Hardware and Embedded
Systems - CHES 2002. Ed. by Burton S. Kaliski, Cetin K. Koc, and
Christof Paar. Vol. 2523. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2003, pp. 13-28. ISBN:
978-3-540-00409-7. DOI: 10.1007/3-540-36400-5_3. URL:
http://dx.doi.org/10.1007/3-540-36400-5_3.

Francois Chollet et al. Keras.
https://github.com/fchollet/keras. 2015.

Omar Choudary and Markus G Kuhn. “Efficient template attacks”.
In: Smart Card Research and Advanced Applications. Springer,
2014, pp. 253-270.

Francois Durvaux et al. “Efficient selection of time samples for
higher-order DPA with projection pursuits”. In: Constructive
Side-Channel Analysis and Secure Design. Springer, 2015,

pp. 34-50.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 45/42


https://doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/3-540-36400-5_3
https://github.com/fchollet/keras

Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

References IV

[GLRPO6]

[Gie+08]

[He+16]

[HGG19]

Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar.
“Templates vs. stochastic methods". In: International Workshop on
Cryptographic Hardware and Embedded Systems. Springer. 2006,
pp. 15-29.

Benedikt Gierlichs et al. “Mutual information analysis”. In:
International Workshop on Cryptographic Hardware and Embedded
Systems. Springer. 2008, pp. 426—442.

Kaiming He et al. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770-778.

Benjamin Hettwer, Stefan Gehrer, and Tim Gneysu. Deep Neural
Network Attribution Methods for Leakage Analysis and Symmetric
Key Recovery. 143. 2019. URL:
https://eprint.iacr.org/2019/143 (visited on 02/21/2019).

16/04/2019, WRAC'H 2019| Eleonora Cagli| 46/42


https://eprint.iacr.org/2019/143

Classifying Side-Channel Desynchronized Signals w

Convolutional Neural Networks

References V

[HZ12]

[Hos+11]

[1S15]

Annelie Heuser and Michael Zohner. “Intelligent Machine
Homicide". English. In: Constructive Side-Channel Analysis and
Secure Design. Ed. by Werner Schindler and SorinA. Huss.

Vol. 7275. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pp. 249-264. ISBN: 978-3-642-29911-7. DOI:
10.1007/978-3-642-29912-4_18. URL:
http://dx.doi.org/10.1007/978-3-642-29912-4_18.

Gabriel Hospodar et al. “Machine learning in side-channel analysis:
a first study”. English. In: Journal of Cryptographic Engineering 1.4
(2011), pp. 293-302. ISSN: 2190-8508. DOI:
10.1007/s13389-011-0023-x. URL:
http://dx.doi.org/10.1007/s13389-011-0023-x.

Sergey loffe and Christian Szegedy. “Batch Normalization:
Accelerating Deep Network Training by Reducing Internal

Covariate Shift". In: CoRR abs/1502.03167 (2015). URL:

http://arxiv.org/abs/1502.03167.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 47/42


https://doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/978-3-642-29912-4_18
https://doi.org/10.1007/s13389-011-0023-x
http://dx.doi.org/10.1007/s13389-011-0023-x
http://arxiv.org/abs/1502.03167

Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

References VI

[KJJ99]

[KSH12]

[LBM15]

[LBM14]

Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential power
analysis”. In: Annual International Cryptology Conference. Springer.
1999, pp. 388-397.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In:
Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States. 2012, pp. 1106-1114.

Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. “A
machine learning approach against a masked AES". In: Journal of
Cryptographic Engineering 5.2 (2015), pp. 123-139.

Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. “Power
analysis attack: an approach based on machine learning”. In:
International Journal of Applied Cryptography 3.2 (2014),

pp. 97-115.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 48/42



Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

References VII

[MOPOS]

[MDM16]

[MHM13]

[MMT15]

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
analysis attacks: Revealing the secrets of smart cards. Vol. 31.
Springer Science & Business Media, 2008.

Zdenek Martinasek, Petr Dzurenda, and Lukas Malina. “Profiling
power analysis attack based on MLP in DPA contest V4. 2". In:
Telecommunications and Signal Processing (TSP), 2016 39th
International Conference on. |IEEE. 2016, pp. 223-226.

Zdenek Martinasek, Jan Hajny, and Lukas Malina. “Optimization
of power analysis using neural network”. In: /nternational
Conference on Smart Card Research and Advanced Applications.
Springer. 2013, pp. 94-107.

Zdenek Martinasek, Lukas Malina, and Krisztina Trasy. “Profiling
power analysis attack based on multi-layer perceptron network”. In:
Computational Problems in Science and Engineering. Springer,
2015, pp. 317-339.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 49/42
-



Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

References VIII

[MZ13]

[0C14]

[Pro+18]

[SVZ13]

Zdenek Martinasek and Vaclav Zeman. “Innovative method of the
power analysis”. In: Radioengineering 22.2 (2013), pp. 586—594.

Colin O'Flynn and Zhizhang David Chen. “ChipWhisperer: An
open-source platform for hardware embedded security research”. In:
Constructive Side-Channel Analysis and Secure Design. Springer,
2014, pp. 243-260.

Emmanuel Prouff et al. Study of Deep Learning Techniques for
Side-Channel Analysis and Introduction to ASCAD Database.
Cryptology ePrint Archive, Report 2018/053.
https://eprint.iacr.org/2018/053. 2018.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep
Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps”. In: arXiv:1312.6034 [cs] (Dec. 20,
2013). arXiv: 1312.6034. URL:
http://arxiv.org/abs/1312.6034 (visited on 09/07/2018).

16/04/2019, WRAC'H 2019| Eleonora Cagli| 50/42
-


https://eprint.iacr.org/2018/053
https://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034

Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

References IX

[SZ14]

[Spr+14]

[SA08]

[TMO7]

Karen Simonyan and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition”. In: arXiv preprint
arXiv:1409.1556 (2014).

Jost Tobias Springenberg et al. “Striving for Simplicity: The All
Convolutional Net". In: arXiv:1412.6806 [cs| (Dec. 21, 2014).
arXiv: 1412.6806. URL: http://arxiv.org/abs/1412.6806
(visited on 09/07/2018).

Francois-Xavier Standaert and Cedric Archambeau. “Using
Subspace-Based Template Attacks to Compare and Combine
Power and Electromagnetic Information Leakages”. English. In:
Cryptographic Hardware and Embedded Systems CHES 2008.
Ed. by Elisabeth Oswald and Pankaj Rohatgi. Vol. 5154. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pp. 411-425. ISBN: 978-3-540-85052-6. DOI:
10.1007/978-3-540-85053-3_26. URL:
http://dx.doi.org/10.1007/978-3-540-85053-3_26.

Mitchell T. M. Machine Learning. McGraw-Hill, New York, 1997.

16/04/2019, WRAC'H 2019| Eleonora Cagli| 51/42


https://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
https://doi.org/10.1007/978-3-540-85053-3_26
http://dx.doi.org/10.1007/978-3-540-85053-3_26

Classifying Side-Channel Desynchronized Signals with Ieti

Convolutional Neural Networks

References X

[Tim19]

Benjamin Timon. “Non-Profiled Deep Learning-based Side-Channel
attacks with Sensitivity Analysis”. In: JACR Transactions on
Cryptographic Hardware and Embedded Systems (Feb. 28, 2019),
pp. 107-131. ISSN: 2569-2925. DOI:
10.13154/tches.v2019.12.107-131. URL: https:
//tches.iacr.org/index.php/TCHES/article/view/7387
(visited on 03/25/2019).

16/04/2019, WRAC'H 2019| Eleonora Cagli| 52/42


https://doi.org/10.13154/tches.v2019.i2.107-131
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://tches.iacr.org/index.php/TCHES/article/view/7387

	Context and State of the Art
	Deep Learning against Misalignment
	Neural Network Classifiers
	Data Augmentation
	Experimental Results

	Gradient Visualization
	Conclusions
	References

