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Introduction and motivation



Random numbers are needed almost everywhere …

• symmetric keys, IVs for block ciphers, session keys, 

• challenges, nonces

• signature keys (RSA, ECDSA)

• ephemeral keys (ECDSA, DSA)

• protocols

• blinding and masking values (→ protection against side-channel attacks)

• zero-knowledge proofs 

• ...
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Well-known flaws (I)

Example 1:

• RNG in a Debian Linux Distribution (OpenSSL, 2008) [10]

• The RNG could only output 215 different random numbers.

• Reason: Accidentally, a line of code had been commented out.
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Well-known flaws (II)

Example 2:

• Flaw in Taiwan’s smart ID cards 

• Bernstein et al. (2013) [BCC+13] were able to factorise 184 out of about two million 1024-bit RSA 

moduli from a public certificate database.
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• One reason (amongst others): The prime

0xc00000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000002f9

(= next prime after 2511 + 2510) occurred 46 times!

• Presumably, the two most significant bits were set ‘11’ to ensure 1024 bit moduli, 

and in all 46 cases 510 zeroes were generated in a row! 

• Of course, it is actually impossible that this happens by chance.



‚Natural‘ security requirements 
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The development of secure RNGs and their trustworthy evaluation are not trivial tasks.

• Which properties should random numbers have?

• The random numbers should assume all admissible values with equal probability.

• The assumed values should be independent from predecessors and successors.

• These requirements characterise an ideal random number generator (a mathematical construct!)

• An ideal RNG does not exist in the real world, and if one existed it would not be possible to verify 

the idealness.



Classification of real-world RNGs
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RNG

deterministic non-deterministic (true)

pure hybrid

pure hybridpure hybrid

physical non-physical

[8], Fig. 2.1



Remark

• deterministic RNGs (DRNGs) a.k.a pseudorandom number generators

• The output of pure DRNGs is completely determined by the seed value.

• Hybrid RNGs show design features from both deterministic RNGs and true RNGs.

• The core of a physical RNG (PTRNG) is the noise source (dedicated hardware).

• Non-physical true RNGs (NPTRNGs) exploit user’s interaction and / or system data.

Typically, NPTRNGs are implemented on PCs or servers.

Example: /Linux /dev/random  and /dev/urandom
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Security requirements (I)

• R1: good statistical properties

• R2: backward secrecy and forward secrecy

(The knowledge of sub-sequences of random numbers shall not allow to practically compute 

predecessors or successors or to guess them with non-negligibly larger probability than without 

knowledge of these sub-sequences.)
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DRNGs: Verification of the security requirements

• R1: by statistical tests

• R2: A DRNG is usually composed of well-known cryptographic primitives. The security proof 

usually traces back to the properties of the primitives.

Example (possible conclusions in security proofs): 

• Breaking the forward secrecy is as at least as hard as mounting a chosen-plaintext attack on 

the AES.

• Breaking the backward secrecy is at least as hard as finding a pre-image of the SHA-256.

• …

Security proofs for DRNGs usually exploit well-known and established cryptographic results.
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DRNGs: Additional security requirements (I)

• R3: enhanced backward secrecy

(It shall not be practically feasible to compute preceding random numbers from the internal state 

or to guess them with non-negligibly larger probability than without knowledge of the internal 

state.)

• The enhanced backward secrecy protects previous random numbers even if the internal state of 

the DRNG has been compromised.
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DRNGs: Additional security requirements (II)

• For particular applications a further security requirement may be desirable, too:

• R4: enhanced forward secrecy

(It shall not be practically feasible to compute future random numbers from the internal state or to 

guess them with non-negligibly larger probability than without knowledge of the internal state.)

Note:

• Pure DRNGs cannot fulfil R4.

• Hybrid DRNGs may fulfil R4 after fresh entropy has been added.

• The security requirements R3 and R4 are DRNG-specific. 

• For true RNGs R3 and R4 are usually ‘automatically’ guaranteed by R2.
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Evaluation criteria for physical RNGs (PTRNGs)



Physical RNG (schematic design)
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Noise source

A noise source is a special type of entropy source that consists of dedicated hardware.

The noise source uses / exploits, for instance, 

• noisy diodes 

• free-running oscillators

• ring oscillators

• radioactive decay

• quantum photon effects 

• …
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Evaluation of the security requirements

• R1: The statistical properties of RNGs are checked by statistical tests.

• This is the easy part of the evaluation.

• Aren’t good statistical properties sufficient for true RNGs?

• The answer is no!
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Example 3: A PTRNG design presented at CHES 2002 [11]
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Example 3 (II)

• The intermediate time between two outputs of random numbers should exceed a minimum 

number of LFSR and CASR cycles.

• The developers modified the design until a set of statistical tests had been passed [11]. 

• Dichtl (CHES 2003) [2] presented an attack (for the specified minimum intermediate time 

between consecutive random numbers under the assumption that all design details would be 

known).

• Good statistical properties are not enough! 

• Schindler (Cryptography & Coding 2003) [7] derived lower and upper bounds for the entropy per 

bit (depending on the jitter of the ring oscillators).
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Entropy (I)
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Definition: Let X denote a random variable that assumes values in a finite set  S = {s1, ... ,st}. 
The (Shannon) entropy of X is given by

H(X) =    Σ Prob(X= sj)⋅log2 (Prob(X=sj))
j=1

t

• 0 ≤ H(X) ≤ log2| S |

• special case (| S | = 2): 0 ≤ H(X) ≤ 1

• min entropy: Hmin (X) = min {- log2(Prob(X=sj)) | j = 1, ... , t}



Entropy (II)

• Entropy cannot be measured like temperature, voltage etc. 

• Universal entropy estimators do not exist.

• Entropy is a property of random variables, not of random numbers.

• Model: In the following we assume that the random numbers are realisations (i.e. values that are 

taken on) by random variables X1,X2, ….

• Aim of a security evaluation: Verify a lower entropy bound per internal random bit.

• Attention! If one considers only the bias one gets an upper entropy bound because 

dependencies reduce the amount of entropy.
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Stochastic model (I)

• Ideally, a stochastic model specifies a family of probability distributions that contains the true 

distribution of the internal random numbers. 

• Alternatively, the stochastic model may specify a family of distributions that contain the 

distribution 

• of the raw random numbers or

• of ‚auxiliary‘ random variables 

if this allows to estimate the (average) increase of entropy per internal random number. 

• The specified family of probability distributions depends on one or on several parameters.
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Example 4: Coin tossing (I)

• PTRNG: A single coin is tossed repeatedly. 

"Head" (H) is interpreted as 1, "tail" (T) as 0.

• Stochastic model:

The observed sequence of random numbers (here: heads and tails) are interpreted as values 

that are assumed by random variables X1,X2,… .

• The random variables X1,X2, … are assumed to be  independent and identically distributed.

(Justification: Coins have no memory.)

• p : = Prob(Xj = H) ∈ [0,1] with unknown parameter p
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Entropy estimation (based on the stochastic model)

• Observe a sample x1,x2, …, xN

Set  p := #{j ≤ N | xj = H} / N 

• To obtain an estimate for the entropy H(X1) substitute p into the entropy formula:

H(X1) = - ( p* log2 (p) + (1-p) * log2(1-p))

Example 4: Coin tossing (II)
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Stochastic model (II)

• For the coin tossing example the stochastic model depends on one parameter (on p).

• Its justification is much easier than for a physical model, which would consider the mass distribution 

etc.

• The ‘price’ is that the parameter p has to be estimated (easy task!)

• Moreover, for different coins the parameter p may vary to some degree. The stochastic model 

covers all coins.

• The parameter(s) are estimated first, and then an entropy estimate is computed (as in Example 4). 

• For physical RNGs the justification of the stochastic model is usually more difficult and requires 

more sophisticated arguments. Ideally, it should be confirmed by experiments.
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Example 5: Killmann & Schindler (CHES 2008) [4]
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Example 5: Stochastic model

• tn: time between the (n-1)th and the nth upcrossing

• raw random numbers [only virtually] 
rn := number of 0-1-crossings of the input voltage of the Schmitt trigger in time period ((n-1)s,ns]

• internal random numbers
yn ≡ yn-1 + rn ≡ y0 + r1 + ...+rn (mod 2)

• T1,T2, ... is stationary (mild assumption) →

R1,R2,R3… is stationary [raw random numbers] →

Y1,Y2,Y3…  is stationary [internal random numbers] →

W1,W2,W3…  is stationary [auxiliary random numbers]

→ 2-parameter family of distributions (depending on the expectation and the generalised variance)
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Example 6: Haddad, Fischer, Bernard, Nicolai (CHES 2015) [3]

• Source of randomness: transient effect ring oscillator (TERO)

• Thorough analysis of the electric processes in the TERO structure

→ stochastic model of the TERO

→ stochastic model of the complete RNG

• Implementation of the RNG design (28 nm CMOS ASIC)

• There are several papers on the evaluation of PTRNGs on the basis of stochastic models in the 

literature.
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PTRNG in operation: Security measures
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aim

shall detect a total breakdown of the noise source (almost) immediately; 

r.n.’s, which have been generated after that instant, shall not be output

total failure test

shall ensure the functionality of the physical RNG when it is startedstart-up test

shall detect non-tolerable weaknesses of the random numbers 

sufficiently soon

online test

test



Security evaluation (summary)

A trustworthy security evaluation should verify

• the suitability of  the RNG design

• a lower entropy bound

• the effectiveness of the online test and the tot test 

• the appropriateness of the specified consequences of a noise alarm

Note:

• The online test should be tailored to the stochastic model.

• The total failure test should be based on a sound failure analysis.
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AIS 31 (and AIS 20)



‚History‘

• Until the end of the nineties the design of PTRNGs often seemed to follow the motto ‚security by 

obscurity‘.

• There was a lack of appropriate evaluation criteria.
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Common Criteria

• provide evaluation criteria for IT products, which

• shall permit the comparability between 

• independent security evaluations. 

• A product or system that has successfully been  evaluated is awarded 

with an internationally  recognized (to particular assurance levels) IT security certificate.

• The Common Criteria and the corresponding  evaluation manuals do not specify evaluation 

criteria for random number generators. 
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AIS 20 and AIS 31 (I)

• In the German evaluation and certification scheme the evaluation guidance documents

AIS 20: Functionality Classes and Evaluation Methodology for Deterministic Random Number 

Generators

AIS 31: Functionality Classes and Evaluation Methodology for Physical Random Number 

Generators

have been effective since 1999 and 2001, respectively.

• The mathematical-technical reference [5] has been updated in 2011 (in English → BSI website).
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AIS 20 and AIS 31 (II)

• The AIS 20 and AIS 31 are technically neutral (no approved designs). Instead, several 

functionality classes are defined.

• The applicant has to give evidence that the RNG meets the requirements.

• PTRNGs are usually integrated in chips / smart cards.

• The AIS 20 and AIS 31 have been well-tried in practice.

• Companies from several countries have received certificates, which confirm that their PTRNGs 

are conformant to particular functionality classes (AIS 20 and AIS 31).
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AIS 20 / AIS 31: Functionality classes
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Functionality classes DRG.2 & DRG.3

DRG.2:

• high seed entropy

• good statistical properties

• backward secrecy and forward secrecy

DRG.3:

• DRG.2-conformance

• + enhanced backward secrecy

Note: The functionality class DRG.3 ensures the privacy of old random numbers even if the internal 

state has been compromised. This demands a one-way state transition function, which may be 

costly (e.g. for smart cards).
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Functionality class PTG.2

• The internal random numbers may have a small entropy defect (due to bias, dependencies).

• effective online tests, total failure tests, start-up tests

Note:

• PTG.2- conformant RNGs are suitable to seed DRNGs.

• The entropy defect is of little importance for the generation of symmetric keys, challenges etc.

• In general, the BSI prefers DRG.4 or (even better) PTG.3-conformant RNGs.
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Functionality classes DRG.4 [hybrid DRNGs]

• DRG.3-conformant RNG

• A strong PTRNG (typically, a PTG.2-conformant) reseeds / updates the internal state 

(upon request, event-driven, after k random numbers).
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Functionality class PTG.3

• Internal random numbers from a PTG.2-compliant RNG are post-processed by a DRG.3-

compliant RNG with memory.

• The post-processing algorithm must not ‚extend‘ the input data.

Note:

• PTG.3  is the highest class as it combines a strong physical noise source with a cryptographic 

post-processing algorithm. 

• Moreover, PTG.3-conformant RNGs should provide better protection against implementation

attacks (side-channel attacks, fault attacks) than other functionality classes.
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Functionality class NTG.1

• good statistical properties

• high entropy per bit

Note:

• Problem / disadvantage: The platform  is not under the control of the RNG designer. For very 

sensitive applications the BSI recommends RNGs from the functionality classes PTG.3 and 

DRG.4.

Note:

• An analysis of /dev/random (and /dev/urandom) for the Linux kernels from the last years can be 

found on the BSI website [6].
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AIS 31: Influence

• Over the years the AIS 31 has certainly influenced the design of physical RNGs.

• The AIS 31 has had significant influence on scientific research. Many papers and PhD theses 

considered physical RNG and their conformance to the AIS 31 by analysing stochastic models.

• In particular, Viktor Fischer (University of Saint Etienne) and his research group has performed a 

lot of research work in this field.

• The AIS 31 is also applied in the French certification scheme. 

Certificates, which confirm the PTG.2-conformance, have mutually been recognized between the 

BSI and ANSSI since 2015.
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Other national and international standards (small selection) (I)

• NIST SP 800-22

• discusses 15 statistical tests and testing strategies

• describes 9 DRNGs

• focuses on statistical testing, cannot serve as a substitute for a solid security analysis (pointed out 

there)
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Other national and international standards (small selection) (II)

• NIST SP 800-90 B (entropy sources): 

• Compared to its draft the standard has noticeably moved towards the AIS 31.

• The applicant has to justify his entropy claim (may be done by a stochastic model).

• specifies several predictors and statistical tests

• further standards: NIST SP 800-90 A (DRNGs) and NIST SP 800-90 C (compositions of true 

and deterministic RNGs)

Schindler Seite 44



Other national and international standards (small selection) (III)

• ISO 20543 (upcoming, standard should appear soon): 

‘Standard Test and analysis methods for random bit generators within ISO/IEC 19790 and 

ISO/IEC15408’

• status: DIS

• treats PTNGs, NPTRNGs, DRNGs

• PTRNGs: a stochastic model  is mandatory

• health tests and total failure tests

• distinguishes between PTRNGs and NPTRNGs
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Conclusion

• RNGs are important components of cryptographic implementations.

• Design and evaluation of RNGs are not easy tasks.

• The AIS 31 has introduced a new evaluation methodology for physical RNGs (‘white-box 

analysis’ based on a stochastic model).

• The AIS 31 has had influence on scientific research, on the design of physical RNGs and on 

other RNG standards.
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Kontakt

Bundesamt für Sicherheit in der Informationstechnik (BSI)
Godesberger Allee 185-189

53175 Bonn
www.bsi.bund.de
www.bsi-fuer-buerger.de

Thank you for your kind attention!
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