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Introduction

Good performance of neural networks in side-channel analysis

Improvement possible using batch normalization and regularization

No deep learning metric usable to evaluate networks for SCA

Proposition of a metric to tell how well a given architecture could
perform
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Batch Normalization

Goal

Standardize the data representation across all layers

Consequence

The network focuses on the relative differences of the values rather than
on the numerical values
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Updated architecture: CNNbn

Network architecture with Batch Normalization
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Training on ASCAD desynchronized traces

DesyncN: random shift between 0 and N applied to the 700 points of
the traces

Desync0
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Training on ASCAD desynchronized traces

DesyncN: random shift between 0 and N applied to the 700 points of
the traces

Desync0 Desync50 Desync100
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Evaluate the performance of a network
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Training Acc. vs. Validation Acc.

Goal

Evaluate the networks during training

CNNbest
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The overfitting phenomena

OverfittingGood estimation
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∆train,val : evaluation of the generalization capacity

Goal

Have a clear indication if the network is overfitting/underfitting and if the
performance of the network can be improved

Notations

Ttrain = Set of traces the network used to train

Tval = Set of traces the network has never seen

Ntrain(model) := min{ntrain | ∀n ≥ ntrain,SR
1
train(model(n)) = 90%}

Nval(model) := min{nval | ∀n ≥ nval ,SR
1
val(model(n)) = 90%}

Metric

∆train,val(model) =| Nval(model)− Ntrain(model) |

Robissout, D. (LabHC) 16/04/2019 12 / 26



How to use the metric
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Representation of ∆train,att for CNNbn
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Regularization

Goal

Reduce ∆train,att even further using regularization

Means

Dropout with parameter λD

L2-Norm regularization with parameter λL2
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Regularization

Goal

Reduce ∆train,att even further using regularization

Means

Dropout with parameter λD

L2-Norm regularization with parameter λL2

Test (step = 0.1) Choice for desync100
λD λL2 λD λL2

CONV 1&2 [0, ..., 0.3] [0, ..., 0.3] 0 0
CONV 3 [0, ..., 0.8] [0, ..., 0.3] 0.5 0.2
CONV 4 [0, ..., 0.8] [0, ..., 0.3] 0.6 0.3
CONV 5 [0, ..., 0.8] [0, ..., 0.3] 0.7 0.3
FC1 [0, ..., 0.8] [0, ..., 0.3] 0 0.3
FC2 [0, ..., 0.3] [0, ..., 0.3] 0 0

Robissout, D. (LabHC) 16/04/2019 16 / 26



Architecture with regularization: CNNbn+reg
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Results without regularization: CNNbn
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Results with regularization: CNNbn+reg
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Attack on desync100 using λL2
= 0.1 for CNNbn+reg

Robissout, D. (LabHC) 16/04/2019 20 / 26



Attack on desync100 using λL2
= 0.2 for CNNbn+reg
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Attack on desync100 using λL2
= 0.3 for CNNbn+reg
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Evolution of ∆train,att for different numbers of epochs

Best results on other desynchronizations

Ntrain Natt ∆train,att FC1: λL2 Nb epochs

Desync0 104 272 168 0.1 125
Desync50 21 279 258 0.1 200

Desync100 76 395 319 0.3 175

Robissout, D. (LabHC) 16/04/2019 23 / 26



Content

1 Batch Normalization

2 ∆train,val : an SCA metric to evaluate performances

3 Regularization

4 Conclusion

Robissout, D. (LabHC) 16/04/2019 24 / 26



Conclusion

New metric to evaluate the possible improvement of an architecture

Normalization and regularization improve CNN performance in
SCA

Given the amount of regularization needed to obtain those results, a
better architecture probably exists

Apply this technique to other networks
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Thank you for listening. Do you have questions ?
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Dropout example

Ref.: Roffo, Giorgio. (2017). Ranking to Learn and Learning to Rank: On the
Role of Ranking in Pattern Recognition Applications.
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Pooling example

Ref.: Max pooling in CNN.
Source: http://cs231n.github.io/convolutional-networks/
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