Analysis of Mixed PUF-TRNG Circuit Based on SR-Latches in FD-SOI Technology

Jean-Luc DANGER, Télécom ParisTech
In collaboration with:
Risa Yashiro, Kazuo Sakiyama (UEC)
Noriyuki Miura, Makoto Nagata (Kobe University)
Yves Mathieu, Tarik Graba, Abdelmalek Si-Merabet (TPT)
Sylvain Guilley (Secure-IC)
Outline

- Principle
- Analysis
- Conclusions
SR-latch as PUF - TRNG

What is the state of Q when S/R goes from 1 to 0?
SR-latch as PUF - TRNG

What is the state of Q when S/R goes from 1 to 0?

- If Gates perfectly balanced \Rightarrow metastability
 ($\sim V_{dd}/2Q$ will converge to a stable state randomly, thanks to the noise) \Rightarrow TRNG
What is the state of Q when S/R goes from 1 to 0?

- If Gates perfectly balanced \Rightarrow metastability ($\sim V_{dd}/2Q$ will converge to a stable state randomly, thanks to the noise)
 \Rightarrow TRNG

- If imbalance \Rightarrow goes to the same stable state
 \Rightarrow PUF (as SRAM-PUF)
What is the cause of imbalance?

- **CMOS process mismatch**
 - Oxide thickness
 - Metal line edge roughness
 - Random dopant fluctuation

- Can be characterized by a time difference T_{su} for an SR latch
- Has a Gaussian distribution
SR latch as PUF or TRNG according to T_{su}

![Graph showing SR latch as PUF or TRNG according to T_{su}](image)

- σ mismatch
- σ noise

PDFs:
- $pdf(D) = N(O, \sigma^2)$
- $pdf(D_1) = N(ID, S^2)$
Set of SR-latch as PUF - TRNG

Among the set of N elements, some of them will be used as PUF. The others as FAST TRNG.

Challenges:

- What is the value of N?
- How many can be used as steady PUFs?
- How many can be used for a TRNG with good entropy?
Set of SR-latch as TRNG

TRNG Requirements:

If noise is independent between latches:

\[
\mathbb{P}[TRNG = 0] = \frac{1 + (2p_i - 1)^N}{2}
\]

\[
\mathbb{P}[Q_i == 1] = p_i.
\]

Entropy = 0.997 \[\rightarrow\] N = 12

AIS31 \[\text{With } p_i \in [0.1, 0.9]\]
Set of SR-latch as PUF

PUF Requirements: The Imbalance \((T_{su})\) has to be controlled in order to:

- Select the most reliable latches during the enrollment phase
- Obtain as many latches at '0' as '1'
How to analyze/control the SR latch Imbalance?

T_{su} adjustment
Not so easy to design in ASIC

FD-SOI Body biasing
FD-SOI Body bias

\[V_{BB} = V_{DD} - V_{DDS} \]

Well voltages

\[V_{DDS} = V_{DD} - V_{BB} \]
\[GNDs = V_{BB} \]

Back-Bias Range

\[-3V < V_{BB} < \frac{V_{DD}}{2} + 300mV\]

Much larger than Bulk techno
Set-up time T_{su} vs Body Bias

\[\Delta V = VB1 - VB2 \]
Outline

- Principle
- Analysis
- Conclusions
Test chip architecture

1024 SR latches driven by a buffer tree

Techno = UTBB FD-SOI 28nm
Adjustment by VB1-VB2 for PUF

PUF: number of stable latches ($\pi_1=0$ or 1 after 1000 tries)

Optimal point (as many 0 as 1)

- VB1 = 0V
- VB1 = 0.5V
- VB1 = 1.1V
Adjustment by VB1-VB2 for TRNG

TRNG: number of unstable latches ($\pi \in [0.1,0.9]$ after 1000 tries)

Optimal point

VB1 = 0V

VB1 = 0.5V

VB1 = 1.1V

The Optimal point is the same for PUF and TRNG!
Impact of the process

VB1-VB2 at the optimal point is constant for a given device and is specific to a device

Device C not significant as the VB range is limited due to a bug in the test chip
The optimal point is the same for the PUF and TRNG, but different from a device to another.
Number of latches in PUF or TRNG at Optimal point

![Graph showing probability of latches](image)

Table I: Number of latches at the optimal point.

<table>
<thead>
<tr>
<th>Device</th>
<th>Optimal point (ps)</th>
<th>Stable latches at 0 or 1</th>
<th>Unstable latches with $p_i \in [0.1, 0.9]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-33.43</td>
<td>287</td>
<td>178</td>
</tr>
<tr>
<td>B</td>
<td>-24.81</td>
<td>280</td>
<td>184</td>
</tr>
<tr>
<td>C</td>
<td>-19.17</td>
<td>258</td>
<td>233</td>
</tr>
</tbody>
</table>
Imbalance due to P/R

Number of latches with $p_i=0.5$

- 2 main branches
- 8 sub-branches
- 4 sub-branches
- 16 sub-branches
Entropy

Combinations for stable latches between 3 devices

$H=2.98\text{ bits}$ instead of 3
Outline

- Principle
- Analysis
- Conclusions
Conclusions

- **Simple structure to get PUF-TRNG**
 - High speed TRNG
 - Reliable PUF as the reliability of each latch can be known
- **Every device needs to be adjusted to the optimal point**
 - The optimal point is when as many '0' as '1'
- **FD-SOI technology allows to obtain the optimal point by body biasing**
- **The buffer tree and the number of latches could be largely reduced**
THANK YOU FOR YOUR ATTENTION!