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Abstract—We describe a massively parallel, high per-
formance and inexpensive method of capturing physical
entropy from existing commodity CMOS imaging sensors.
The covers the physics, how to measure its Shannon entropy
[1], a simple high performance method to extract this
entropy into cryptographic quality random numbers and
finally the results of testing against the DieHarder [2] tests.

The result is a recipe on how to create a True Random
Number Generator (TRNG) using sensor noise that has a
known amount of entropy and how to make sure that the
TRNG is functioning properly.

I. INTRODUCTION

Cryptographic history is replete in examples of the
effects of bad random number generators. Even given a
constant stream of papers from 1995 [3] through today
[4] there is still nothing to even suggest that this sorry
state of affairs will ever end.

There have been many true random number generators
but none have scaled with Moore’s law. Typically a
TRNG generate a single bit at a time which results in
slow (and typically a more expensive) solution compared
to what our solution.

The current solution to achieve a large number of bits
in a reasonable amount of time is to take a minimum
amount of entropy and expand this with a PseudoRan-
dom Number Generator (PRNG). PRNGs are also known
as PseudoRandom Bit Generator (PRBG).

If we can easily create random numbers from an
inexpensive source with far more entropy than we need,
why bother with the complicated system of PRNGs that
we have today?

A. Existing hardware random number generators

Most random number generators are focused on cre-
ating random bits, aggregate, whiten and then expanding
with a PRNG. Samples include:

• rolling physical dice in a machine [5].
• measuring the noise from a single avalanche diode

[6].

• taking hundreds of free running oscillators and mix
them down to a single bit [7].

• taking a beam of photons to a beam splitter and
counts which path the photons take [8].

• placing a Ceasium-137 radiation source in front of
a radiation monitor [9].

• Intel CPUs have a TRNG that can generate over 75
Kbit/sec after the corrector which is then used to
seed a PRNG [10].

There are only three known methods of getting ran-
dom information from an CMOS image sensors. These
include calculating the entropy from a light source [11]
and from a more informal set of ideas “lavarand” and
“LavaRnd” [12]–[14]. This paper differs in the methods
of generating, gathering, measuring and distilling the
entropy from each of these three other methods.

B. PRNG

Pseudorandom bit generators are typically used to
expand s random bits (seed) to d bits d � s [15, page
170]. The main failures of PRNGs are:

• The use of unreliable source of entropy [4], [16].
• The false assumption that the PRBG is secure [3],

[17]–[23]
• The assumption that the algorithm is not back-

doored [24], [25].
Compared to PRNGs, we focus eliminating the above

failures by creating random bits directly raw entropy, bits
that are never expanded.

II. CMOS SENSOR TO RANDOM BITS

The process of taking data from a CMOS sensor to
a collection of random bits is comprised of a series
of steps. First we need to gather raw data from the
CMOS Sensor, but raw data is not usable directly. The
process to convert raw data with incomplete entropy to
data with 100% entropy per bit is called Whitening.
Whitening will compress the data stream such that the
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Figure 1: Bands of various materials [26]
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Figure 2: Sensor A2D

result will have 100% entropy per bit (every bit having
a perfect 50/50 probability of being a 1 or 0). Before
we can whiten the data, we need to determine the total
amount of Shannon Entropy that at least 99.95% of the
pixels have. Once the raw data has been whitened, it can
be directly used as fully random bits.

To be sure that the device is functioning properly, we
must first calibrate the system both before we use it and
periodically after.

We will also discuss additional check desirable when
a random number generator is being used in life-critical
(medical, military, etc.) or safety-critical (Nuclear power,
Aircraft) [27]. These include additional checks that the
operating environment of the system is within norms,
and checks that the calculations were performed cor-
rectly.

A. CMOS Sensor as a Random Source

Noise in CMOS sensors has been widely studied [28],
[29] in an effort to understand and reduce it. These
efforts to eliminate noise now concentrate on cooling,
but nothing has been successful at eliminating noise
at typical room temperature. We embrace the noise.

We begin by using a CMOS imaging array, but these
techniques can be applied equally to CCD array, any
imaging array that can be operated in “raw mode”. Raw
mode is important because it gives us control over the
analog to digital portion of the process and measure the
low order bits.

CMOS image sensor noise is based on the principal
that a phonon can excite an electron in a semiconductor
and move that electron from the valence band to the
conduction bands. These bands are described in Figure
1 and [30]. A phonon is a quantized mode of vibration
occurring in rigid atomic lattices, such as those in
crystalline solids. [31].

The electrons that move to the conduction band are
described as pixel noise (also known as shot noise). Pixel
noise of specific sensors are measured and characterized
as µd electrons/second at some standard temperature
[32]. Sensors used in photography where low noise in
the image is desirable select a lower µd. As a random
source a higher µd is better because it also produces
more entropy. In any case the selection is not important
to the discussion, we just need to know that it exists.

One device, the Sony ICX424AL image sensor has
a µd of 12.86 e−/s [33] or 2mV for a 1/60s black
exposure [34]. We can assume this was measured at
“room temperature” or 70◦F.

Each pixel location has its own µd because of manu-
facturing non-uniformity of the array itself. Addition-
ally, it is known that the accumulations of electrons
in the conduction band over time is based on Poisson
distribution. µd also increases exponentially with the
temperature [35].

To measure the noise, the gain of the amplifiers needs
to be set to ensure that the pixel noise is not at or below
the “0” of the digitized result (in this case it was set to 64
out of 65535). The gain should not be set so high as to
saturate. Figure 2 describes the process of converting the
electrons in the conduction band to a digital pixel value
as well as the expected probability distribution function
for the noise.

B. Calculating Shannon Entropy

To determine the parameters of the whitening algo-
rithm we need to calculate the Shannon Entropy of the
bits from a “raw” image. This provides the average and
distribution of the unpredictability in the CMOS sensor
output. Calculating this correctly is imperative because
the incorrect whitening can either result in a non-random
output by assuming there is more entropy than there
really is, or a lower number of random bits if we assume
a lower entropy than there really is.
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Figure 3: Distribution of sensor pixel entropy
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Figure 4: Cumulative distribution of sensor pixel entropy

The final number we will use for the whitening step
will be the minimum entropy that 99.95% of the pixels
have.

Other entropies, such as min-entropy [36], require
knowledge of correlations that we do not have.

Shannon entropy is defined as:

H(X) = −
n∑

i=1

P(xi)log2P(xi) (1)

where X is the probability distribution of each
of the values. For instance, if we assume values of
{64, 64, 128, 192, 256} would have a probability distri-
bution of X = { 25 ,

1
5 ,

1
5 ,

1
5} and then calculated the

Shannon entropy of those values is H(X) = 1.9219 bits.
For this paper we took 100 “black pictures” from a

9MP sensor. A black picture is the image generated by
a CMOS sensor in the absence of light. Think of it as
a camera with the lens cap still on. The data from each
picture is stored as 16 bit words with some padding at
the end of each row. To start with, we calculated the
entropy in each pixel individually, that is, 100 entries
for the pixel at (0,0) and then repeat this process for all
9MP. The distribution of entropy is shown in figure 3
that shows a peak at 3.4 bits. This means that, for every

16 bits of pixel information, we should be able to extract
3.4 bits of “random”.

As a data point, a pixel with all 100 images having
different values will have an entropy of log2100 = 6.643
bits. In these data, there are 3 pixels that have a 1 value
that never changes and there is 1 pixel with 100 different
values.

The cumulative distribution in figure 4 shows that
more than 99% of the values between 3.1 and 3.9 bits
and 99.9% between 3.0 and 4.7 bits. This is also stated
as 0.05% of the pixels have less than 3.0 bits which is
the same as saying that 99.95% of the pixels have at
least 3.0 bits of entropy, which is the number we are
looking for using with the whitening algorithm.

C. Whitening algorithm

There are many methods available for whitening. Our
criteria for the whitening algorithm is that it is easy
to show that it does not have a back door and that it
can be easily evaluated to show that it does not destroy
entropy. There are many other algorithms that can be
used. Simply running SHA-2 or SHA-3 on the data is
more than adequate [37]. There are additional methods
of whitening described in [38].

Whitening is fundamentally different than typical
PRNGs. Whitening compresses the data until it has
100% entropy. PRNGs take a smaller amount of entropy
(also know as the seed) and uses a fixed algorithm to
create a much larger amount of data (d � s). In this
case, the data d will never have any more entropy than
the seed s had. It is this expansion feature of PRNGs
that we claim is both unnecessary and dangerous.

In this paper the algorithm starts with the average
Shannon entropy s, the word size w in bits. We then
calculate p = dw/se pixels to fill a w bit word. p must
be larger than a natural boundary of the data (such as a
pixel). Also, we need p ≥ w or there is a possibility that
2 or more bits may cancel each other out. If these two
requirements can not be met adjusting the word size, you
can run the process multiple times each time increasing
the entropy per bit until it reaches 100%.

In algorithm 1, we use an array A indexed by all
possible pixel values containing w bit random numbers.
We then accumulate them and output the result after p
pixels are added. The simple rotate is added to make
sure that if the same pixel value is added to the same
word, they do not cancel each other out.

For our case, we simply populated A with data from
/dev/random. The result needs to be tested to make
sure that there is adequate randomness in the result. Even

3
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Data:
• an array A indexed by all possible pixel values containing w bit random numbers.
• p pixels per word (described above)
• Input pixels

Result: Output words containing fully random bits

while at least p pixels left do
a← 0 ;
for 1...p do

a← Rotate1(a)
x← Get next pixel
a← a⊕A(x)

end
Output a

end
Algorithm 1: Whitening algorithm

though there is PRNGs used in /dev/random for the
constants in the algorithm, these data are not the source
of randomness, the pixel values are.

In our case, the total number of pixel values is 65536
and w = 32 bits. With s = 3.0 we get a p = 11 pixels
per 32 bit word.

D. Characterization and calibration

This paper takes an analog physical device and cal-
ibrates it to produce random numbers. In this case the
amount of entropy that the CMOS sensor produces is
an analog number, not a constant. Unlike other parts
of computers like RAM, where there is constant error
correction and detection, there are no hardware checking
that there is randomness being produced. As a result, the
CMOS sensor’s Shannon Entropy needs to be calibrated
before it is used and routinely while it is being used.
The goal of calibration is both check that s is within
expected bounds and then recalculate an appropriate p
for this device. The goal is to guarantee the ultimate
entropy is as expected.

For the calibration of the device, a test of a number of
images roughly at least 10x the expected amount values
per pixel so that the redundancy can be seen. In our
case we have s = 3.4 bits or 23.4 values per pixel. The
10x rule gives us about 100 images to get a good result.
Certainly running more images does not hurt.

To make sure that the device is continuing to function,
routine recalibration is needed. This would be similar
to drug lot testing where a small portion of a lot is
subjected to additional testing to make sure the lot is
OK and to be able to adjust variance out of the system.
This routine calculation needs to compare against the

original expected distribution, not the most recent, to
protect against gradual aging and reducing entropy.

E. Operational Environment

The analog nature of the CMOS sensor means that it
is sensitive to variations in the environment and for life-
critical and safety-critical applications this is important.

The largest environmental parameter is temperature.
As the sensor is cooled, the amount of noise (entropy)
goes down. If the temperature would be allowed to
approach 0K, the entropy would approach 0 and the
system would not produce random numbers. This is very
similar to what NIST expects in their 140-4 at their Secu-
rity Level 4 against “compromise due to environmental
conditions or fluctuations outside of the module’s normal
operating ranges for voltage and temperature.” [39].

If physical tampering is a reasonable threat, then
tamper responsive behavior could be employed [40]. Ad-
ditionally environmental sensors such as electomagnetic
fields [41] could be added.

F. Checks on each image processed

For Life-Critical and Safety-Critical systems assume
computers can make mistakes. It may be valuable to do
a χ2 test on the expected distribution of a single picture.
Single image distribution are shown in figures 6 and 7.

The whitening algorithm can be run twice on the data
to make sure that the calculation is correct. A final quick
statistical test of the numbers can to be performed.

For the ultimate in protection several of these systems
can be xor’d together.
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Figure 5: Dieharder test results
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Figure 6: Distribution of pixel values in a single image
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Figure 7: Distribution of pixel values in a single image
zoomed in

III. RESULTS

The benchmark for testing randomness is the
Dieharder test. “The primary point of dieharder (like
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diehard before it) is to make it easy to time and test
(pseudo)random number generators, both software and
hardware, for a variety of purposes in research and
cryptography.” [2]. These tests have been used as the
“gold standard” to be able to compare and contrast
TRNG and PRNGs.

The results of the testing is shown in figure 5. The
Dieharder test [2] produces a a series of numbers that
are should be uniformly distributed from (0 . . . 1). The
graph are those numbers sorted and graphed. Closer to
the diagonal is better.

In this graph, the LSFR rand() clearly fails. For this
test we used a Linux CentOS system. On this system,
rand() is a call to random() which “uses a nonlinear
additive feedback random number generator employ-
ing a default table of size 31 long integers to return
successive pseudo-random numbers in the range from
0 to RAND MAX”. This result justifies the OWASP
vulnerability thatrandom() should never be used for
cryptographic applications [42].

“The Collector” passes all tests and is closer to
the diagonal than any other secure PRNG including
/dev/urandom.

IV. FUTURE WORK

Future work could be to characterize the sensors under
different temperatures, characterize more failure modes
and determine appropriate χ2 values.

V. CONCLUSION

This paper concludes that it is possible to create true
random numbers with at high performance and low cost
thus eliminating the problems of insecure PRNGs.
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